Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 16(1): e0245756, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33481938

RESUMO

The non-breeding period of pelagic seabirds, and particularly the moulting stage, is an important, but understudied part of their annual cycle as they are hardly accessible outside of the breeding period. Knowledge about the moulting ecology of seabirds is important to understand the challenges they face outside and within the breeding season. Here, we combined stable carbon (δ13C) and oxygen (δ18O) signatures of rectrices grown during the non-breeding period of two pairs of storm-petrel species breeding in the northern (European storm-petrel, Hydrobates pelagicus, ESP; Leach's storm-petrel, Hydrobates leucorhous, LSP) and southern (black-bellied storm-petrel, Fregetta tropica, BBSP; Wilson's storm-petrel, Oceanites oceanicus, WSP) hemispheres to determine differences in moulting ranges within and between species. To understand clustering patterns in δ13C and δ18O moulting signatures, we examined various variables: species, sexes, years, morphologies (feather growth rate, body mass, tarsus length, wing length) and δ15N. We found that different factors could explain the differences within and between the four species. We additionally employed a geographical distribution prediction model based on oceanic δ13C and δ18O isoscapes, combined with chlorophyll-a concentrations and observational data to predict potential moulting areas of the sampled feather type. The northern species were predicted to moult in temperate and tropical Atlantic zones. BBSP was predicted to moult on the southern hemisphere north of the Southern Ocean, while WSP was predicted to moult further North, including in the Arctic and northern Pacific. While moulting distribution can only be estimated on large geographical scales using δ13C and δ18O, validating predictive outcomes with food availability proxies and observational data may provide valuable insights into important moulting grounds. Establishing those, in turn, is important for conservation management of elusive pelagic seabirds.


Assuntos
Aves/crescimento & desenvolvimento , Plumas/crescimento & desenvolvimento , Muda , Animais , Monitoramento Ambiental , Feminino , Ilhas , Masculino , Oceanos e Mares , Especificidade da Espécie
2.
Sci Total Environ ; 728: 138768, 2020 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-32339838

RESUMO

Species sharing resources are predicted to compete, but co-occurring species can avoid competition through niche partitioning. Here, we investigated the inter- and intra-specific differences using stable isotope analyses in the black-bellied storm-petrel (Fregetta tropica) and the Wilson's storm-petrel (Oceanites oceanicus), breeding sympatrically in maritime Antarctica. We analysed stable carbon, nitrogen and oxygen isotopes in samples representing different life stages; chick down (pre-laying females), chick feather (chick), and adult blood (chick-rearing adults). Pre-laying females had wider stable isotope niches than chicks or chick-rearing adults, due to pre-laying females being free roaming while chick-rearing adults were central-place-foragers. Chicks were fed at a higher trophic level than the adults (higher δ15N), likely to compensate for the high nutritional demands of the growing chicks. Wilson's storm-petrels showed substantial overlap in stable isotope niches between all life stages, while the black-bellied storm-petrel chicks showed very little overlap. Wilson's storm-petrel niches significantly overlapped with those of pre-laying and chick-rearing black-bellied storm-petrels, suggesting negligible niche partitioning. Chick growth rate was negatively correlated with chick δ15N values, suggesting nutritional stress resulting in the use endogenous instead of dietary amino acids in protein synthesis. The higher trophic level of the relatively larger black-bellied storm-petrel chicks may be due to their longer stay in the nest, and relatively larger body mass gain, despite chick growth rates being similar to the smaller Wilson's storm-petrel chicks. Despite breeding sympatrically, the studied storm-petrel species showed considerable overlap in isotopic niches, which may be explained by sharing the same main prey species, reducing the detectability of foraging niche partitioning through stable isotope analyses. We found dietary shifts in black-bellied storm-petrels that are absent in Wilson's, showing different chick provisioning strategies, and shows that the high productivity of the Antarctic marine ecosystem may facilitate foraging niche overlap of sympatrically living species.


Assuntos
Cruzamento , Ecossistema , Animais , Regiões Antárticas , Plumas , Feminino , Isótopos
3.
PeerJ ; 7: e7807, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31637118

RESUMO

Moulting and breeding are costly stages in the avian annual cycle and may impose trade-offs in energy allocation between both stages or in their timing. Here, we compared feather growth rates (FGR) of rectrices in adults between two pairs of small pelagic Procellariiformes species differing in moult-breeding strategies: the European storm-petrel Hydrobates pelagicus and Leach's storm-petrel Oceanodroma leucorhoa breeding in the Northern Hemisphere (Faroe Islands), showing moult-breeding overlap in tail feathers; and the Wilson's storm-petrel Oceanites oceanicus and black-bellied storm-petrel Fregetta tropica, breeding in the Southern Hemisphere (South Shetlands), temporally separating moult and breeding. We used ptilochronology (i.e., feather growth bar width) to reconstruct FGR reflecting relative energy availability during moult. Based on previous research, we expected positive correlations between feather length (FL) and FGR. Additionally, we expected to find differences in FGR relative to FL between the moult-breeding strategies, where a relatively higher FGR to FL indicates a higher energy availability for moult. To investigate if energy availability during moult in the studied species is similar to species from other avian orders, we used FGR and FL found in literature (n = 164) and this study. We fitted a phylogenetic generalized least squares (PGLS) model to FGR with FL, group (i.e., Procellariiformes vs. non-Procellariiformes) and the interaction FL * group as predictors. As it has been suggested that Procellariiformes may form two growth bars per 24 h, we fitted the same model but with doubled FGR for Procellariiformes (PGLSadj). The group term was significant in the PGLS model, but was not in the PGLSadj model, confirming this suggestion. Individually predicted FGR by the PGLSadj model based on FL, showed that the Southern species have a significantly higher FGR relative to FL compared to the Northern species. Additionally, we found no correlation between FL and FGR in the Northern species, and a positive correlation between FL and FGR in the Southern species, suggesting differences in the trade-off between feather growth and size between species from both hemispheres. The observed differences between the Northern and Southern species may be caused by different moult-breeding strategies. The Southern species may have had more energy available for moult as they are free from breeding duties during moult, while the Northern species may have had less free energy due to a trade-off in energy allocation between breeding and moulting. Our study shows how different moult-breeding strategies may affect relative nutritional condition or energy allocation during moult of migratory pelagic seabirds.

4.
Sci Total Environ ; 692: 382-392, 2019 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-31351282

RESUMO

Data on trace element bioavailability in the south-polar marine ecosystem is still scarce, compared to that relating to temperate zones. Seabirds can be used as indicators of ecosystem health and sentinels of environmental pollution, constituting a link between marine and terrestrial environments. Here, we analysed the concentration of 17 elements (with special emphasis on mercury, Hg) in feathers of adults and chicks of two pelagic seabirds - the Wilson's storm petrel Oceanites oceanicus and the black-bellied storm petrel Fregetta tropica - breeding sympatrically in the maritime Antarctic. Since adult feathers are formed during the non-breeding period away from the breeding grounds, but down and body feathers of chicks grow at the breeding sites, we were able to evaluate the birds' exposure to contaminants at various stages of their annual life cycle and in various marine zones. We found that of the two studied species, adult black-bellied storm petrels had significantly higher mercury, selenium and copper levels (5.47 ±â€¯1.61; 5.19 ±â€¯1.18; 8.20 ±â€¯0.56 µg g-1 dw, respectively) than Wilson's storm petrels (2.38 ±â€¯1.47; 1.81 ±â€¯0.98; 2.52 ±â€¯2.35 µg g-1 dw, respectively). We found that Wilson's storm petrel chicks had a significantly different contaminant profile than adults. Arsenic, bismuth and antimony were detected exclusively in the chick feathers, and the Se:Hg molar ratio was higher in chicks than in adults. Our study also suggests considerable maternal transfer of Hg (to down feathers) in both species. As global contaminant emissions are expected to increase, birds inhabiting remote areas with sparse anthropogenic pollution can indicate the temporal trends in global contamination.


Assuntos
Aves/metabolismo , Monitoramento Ambiental , Plumas/química , Mercúrio/metabolismo , Oligoelementos/metabolismo , Poluentes Químicos da Água/metabolismo , Animais , Regiões Antárticas , Especificidade da Espécie
5.
PLoS One ; 14(6): e0217708, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31194763

RESUMO

The importance of nest characteristics for birds breeding in the extreme climate conditions of polar regions, has been greatly understudied. Nest parameters, like nest orientation, exposure and insulation, could strongly influence microclimate and protection against precipitation of the nest, thereby affecting breeding success. A burrow nesting seabird, the Wilson's storm-petrel (Oceanites oceanicus) is an excellent model species to investigate the importance of nest characteristics, as it is the smallest endotherm breeding in the Antarctic. Here, we investigated the effects of nest parameters such as internal nest dimensions, nest micro-topography and thermal properties of the nest burrow and the influence of weather conditions on breeding output, measured as hatching success, chick survival, and chick growth. We collected data during the austral summers of 2017 and 2018, on King George Island, maritime Antarctica. Our results showed that the thermal microclimate of the nest burrow was significantly improved by a small entrance size, a low nest height, and insulation and tended to be enhanced by a low wind exposition index and an eastern nest site orientation. In addition, an eastern nest site orientation significantly reduced the chance of snow blocking. However, the relationships between nest characteristics and breeding output were complex and might be affected by other parameters like food availability and parental quality. The relation between chick growth and nest air temperature remained especially indistinct. Nevertheless, our results indicate that nest characteristics that enhance the thermal microclimate and reduce the risk of snow blocking favoured both hatching success and chick survival. Due to climate change in the Antarctic, snowfall is expected to increase in the future, which will likely enhance the importance of nest characteristics that determine snow blocking. Additionally, despite global warming, thermally favourable nest burrows will likely still be advantageous in the highly variable and challenging Antarctic climate.


Assuntos
Aves/fisiologia , Cruzamento , Microclima , Comportamento de Nidação , Animais , Regiões Antárticas , Estações do Ano , Neve
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...